JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 27, No. 1, 2014 http://dx.doi.org/10.14403/jcms.2014.27.1.99

M-ISOMETRIC WEIGHTED SHIFTS

JUN IK LEE*

ABSTRACT. In this paper, we characterize the m-isometric weighted shifts, using this characterization, we study the relations between the hyponormality and the m-isometricity of operators.

1. Introduction

Let \mathcal{H} and \mathcal{K} be complex Hilbert spaces, let $\mathcal{L}(\mathcal{H}, \mathcal{K})$ be the set of bounded linear operators from \mathcal{H} to \mathcal{K} and write $\mathcal{L}(\mathcal{H}) := \mathcal{L}(\mathcal{H}, \mathcal{H})$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *normal* if $T^*T = TT^*$, *hyponormal* if $T^*T \geq TT^*$, and *subnormal* if $T = N|_{\mathcal{H}}$, where N is normal on some Hilbert space $\mathcal{K} \supseteq \mathcal{H}$. If T is subnormal then T is also hyponormal. An operator $T \in \mathcal{L}(\mathcal{H})$ is called an *m*-isometry if

(1.1)
$$\sum_{k=0}^{m} (-1)^k \binom{m}{k} T^{*k} T^k = 0.$$

It is easy to see that the equation (1.1) is equivalent to the following equation

(1.2)
$$\sum_{k=0}^{m} (-1)^k \binom{m}{k} ||T^k x|| = 0$$

for all $x \in \mathcal{H}$. If m = 1 then it is said to be *isometry*. It is easy to see that any m-isometric operator is also (m+1)-isometry. But the converse is not true in general. m-isometric operators was first introduced in ([1],[2],[3]) and has received much attention in recent years. Given a bounded sequence of positive numbers $\alpha : \alpha_0, \alpha_1, \cdots$ (called *weights*),

Received December 11, 2013; Accepted January 16, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 47B20, 47B37, 47A13, 28A50; Secondary 44A60, 47-04, 47A20.

Key words and phrases: m-isometry, weighted shifts, hyponormal, subnormal, propagation.

^{*}This research was supported by a 2013 Research Grant from Sangmyung University.

Jun Ik Lee

the (unilateral) weighted shift W_{α} associated with α is the operator on $\ell^2(\mathbb{Z}_+)$ defined by $W_{\alpha}e_n := \alpha_n e_{n+1}$ for all $n \ge 0$, where $\{e_n\}_{n=0}^{\infty}$ is the canonical orthonormal basis for ℓ^2 . It is straightforward to check that W_{α} can never be normal, and that W_{α} is hyponormal if and only if $\alpha_n \le \alpha_{n+1}$ for all $n \ge 0$. The moments of α are given as

$$\gamma_k \equiv \gamma_k(\alpha) := \begin{cases} 1 & \text{if } k = 0\\ \alpha_0^2 \cdots \alpha_{k-1}^2 & \text{if } k > 0. \end{cases}$$

In this paper, we characterize the m-isometric weighted shifts, using this characterization, we study the relations between the hyponormality and the m-isometricity of operators.

2. Main results

We start from a basic result.

PROPOSITION 2.1. Every isometry is subnormal and hence hyponormal.

Proof. If $T \in \mathcal{L}(\mathcal{H})$ is isometry then $T^*T = I$. By a direct calculation, we can see that $N := \begin{pmatrix} T & I - TT^* \\ 0 & T^* \end{pmatrix}$ is a normal extension of T. Thus, T is subnormal.

In view of Proposition 2.1, it is interesting to ask that every m-isometric operator is whether subnormal or hyponormal. To answer for this questions, we first give a characterization of m-isometric weighted shifts.

THEOREM 2.2. W_{α} is m-isometry if and only if

(2.1)
$$\sum_{k=0}^{m} (-1)^k \binom{m}{k} \gamma_{n+k} = 0$$

for all $n \geq 0$.

Proof. (\Rightarrow) Suppose that W_{α} is m-isometry. Then we have the equation (2.1) from the equation (1.2) taking $x = e_n$.

(\Leftarrow) Suppose that the equation (2.1) holds for all $n \ge 0$. Since $W^*_{\alpha}W_{\alpha}$ is diagonal, it is easy to show that the equation (1.2) holds for any $x = \sum_{n=1}^{\infty} x_n e_n \in \mathcal{H}$. Therefore, W_{α} is m-isometry.

COROLLARY 2.3. For a weighted shift W_{α} , we have:

(i) W_{α} is isometry if and only if $\alpha_n = 1$ for all $n \ge 0$, i.e., W_{α} is the unilateral shift.

100

m-isometric weighted shifts

- (ii) W_{α} is 2-isometry if and only if $\alpha_{n+1}^2 = 2 \frac{1}{\alpha_n^2}$ for all $n \ge 0$. (iii) W_{α} is 3-isometry if and only if $\alpha_{n+2}^2 = 3 \frac{3}{\alpha_{n+1}^2} + \frac{1}{\alpha_n^2 \alpha_{n+1}^2}$ for all $n \ge 0.$

Proof. (i) If W_{α} is isometry then $\gamma_n = \gamma_{n+1}$ for all $n \ge 0$, and hence $\alpha_n = 1$ for all $n \ge 0$. The converse is clear.

(ii) Note that W_{α} is 2-isometry if and only if $\gamma_n - 2\gamma_{n+1} + \gamma_{n+2} = 0$ for all $n \ge 0$ if and only if $\alpha_{n+1}^2 = 2 - \frac{1}{\alpha_n^2}$ for all $n \ge 0$.

(iii) Note that W_{α} is 3-isometry if and only if $\gamma_n - 3\gamma_{n+1} + 3\gamma_{n+2} - \gamma_{n+3} = 0$ for all $n \ge 0$ if and only if $\alpha_{n+2}^2 = 3 - \frac{3}{\alpha_{n+1}^2} + \frac{1}{\alpha_n^2 \alpha_{n+1}^2}$ for all $n \ge 0$. \Box

THEOREM 2.4. If W_{α} is m-isometry and the weight sequence α is convergent, then the limit of α must be 1.

Proof. Suppose $\lim \alpha_n = a$ and $\epsilon > 0$ was given. First note that the equation (2.1) is equivalent to

$$1 + \sum_{k=1}^{m} (-1)^k \binom{m}{k} \alpha_n^2 \cdots \alpha_{n+k-1}^2 = 0$$

for all $n \ge 0$. Since $\lim \alpha_n = a$, we can see that $|1 + \sum_{k=1}^m (-1)^k {m \choose k} a^{2k}| < \epsilon$ for sufficiently large n. But since $1 + \sum_{k=1}^m (-1)^k {m \choose k} a^{2k} = (1 - a^2)^m$, we have the desired result.

J. Stampfli [8] showed that for subnormal weighted shifts W_{α} , a propagation phenomenon occurs which forces the flatness of W_{α} whenever two equal weights are present. Later, A. Joshi proved in [7] that the shift with weights $\alpha_0 = \alpha_1 = a$, $\alpha_2 = \alpha_3 = \cdots = b$, 0 < a < b, is not quadratically hyponormal, and P. Fan [6] established that for a = 1, b = 2, and $0 < s < \sqrt{5}/5$, $W_{\alpha} + s W_{\alpha}^2$ is not hyponormal. On the other hand, it was shown in [5, Theorem 2] that a hyponormal weighted shift with *three* equal weights cannot be quadratically hyponormal without being flat: If W_{α} is quadratically hyponormal and $\alpha_n = \alpha_{n+1} = \alpha_{n+2}$ for some $n \ge 0$, then $\alpha_1 = \alpha_2 = \alpha_3 = \cdots$, i.e., W_{α} is subnormal. Furthermore, in [5, Proposition 11] it was shown that, in the presence of quadratic hyponormality, two consecutive pairs of equal weights again force flatness, thereby subnormality. Y. Choi [4] improved this result, that is, if W_{α} is quadratically hyponormal and $\alpha_n = \alpha_{n+1}$ for some $n \geq 1$, then W_{α} is flat. Moreover, Y. Choi [4] also showed that if W_{α} is polynomially hyponormal and $\alpha_n = \alpha_{n+1}$ for some $n \ge 0$, then W_{α} is flat.

Jun Ik Lee

PROPOSITION 2.5. (Propagation) Let W_{α} be a weighted shift with weight sequence $\{\alpha_n\}_{n=0}^{\infty}$.

- (i) ([8, Theorem 6]) Let W_{α} be subnormal. If $\alpha_n = \alpha_{n+1}$ for some $n \ge 0$, then α is flat, i.e., $\alpha_1 = \alpha_2 = \alpha_3 = \cdots$.
- (ii) ([5, Corollary 6]) Let W_{α} be 2-hyponormal. If $\alpha_n = \alpha_{n+1}$ for some $n \ge 0$, then α is flat.
- (iii) ([4, Theorem 1]) Let W_{α} be quadratically hyponormal. If $\alpha_n = \alpha_{n+1}$ for some $n \ge 1$, then α is flat.
- (iv) ([4, Theorem 2]) Let W_{α} be polynomially hyponormal. If $\alpha_n = \alpha_{n+1}$ for some $n \ge 0$, then α is flat.

We now show that 2-isometric weighted shift operator is isometry if two equal weights are presented.

THEOREM 2.6. If W_{α} is 2-isometry with $\alpha_n = \alpha_{n+1}$ for some $n \ge 0$ then $\alpha_n = 1$ for all $n \ge 0$ i.e., W_{α} is isometry.

Proof. By Corollary 2.3 (ii), we can see that $\alpha_n = \alpha_{n+1} = 1$. Thus, by again Corollary 2.3 (ii), we have $\alpha_n = 1$ for all $n \ge 0$.

THEOREM 2.7. If W_{α} is 2-isometry then the weight sequence α is decreasing and hence converges to 1.

Proof. If W_{α} is 2-isometry, observe that $\alpha_{n+1}^2 = 2 - \frac{1}{\alpha_n^2} \leq \alpha_n^2$ for all $n \geq 0$. By the Monotone Convergence Theorem, the weight sequence α converges. By Theorem 2.4 the limit should be 1.

COROLLARY 2.8. For a weighted shift W_{α} , if $\alpha_n < 1$ for some $n \ge 0$ then W_{α} is not 2-isometry.

Proof. Since the weight sequence α is decreasing, if $\alpha_n < 1$ for some $n \ge 0$, then the weight sequence α cannot converge to 1. Thus, W_{α} is not 2-isometry.

Now, we can give an example which is 2-isometry but not hyponormal(and hence not subnormal).

EXAMPLE 2.9. Let W_{α} be the weighted shift with the weight sequence $\alpha \equiv \sqrt{\frac{n+2}{n+1}}$. Then W_{α} is 2-isometry but not hyponormal.

Proof. Since $\gamma_n = n + 1$ for all $n \ge 0$, we have $\sum_{k=0}^2 (-1)^k {\binom{2}{k}} \gamma_{n+k} = \gamma_n - 2\gamma_{n+1} + \gamma_{n+2} = n + 1 - 2(n+2) + n + 3 = 0$. Thus, W_{α} is 2-isometry. However, W_{α} is not hyponormal because the weights are decreasing. \Box

102

m-isometric weighted shifts

References

- J. Agler and M. Stankus, m-Isometric transformation of Hilbert space, I, Integral Equations Operator Theory 21 (1995), 383-429.
- [2] J. Agler and M. Stankus, m-Isometric transformation of Hilbert space, II, Integral Equations Operator Theory 23 (1995), 1-48.
- [3] J. Agler and M. Stankus, m-Isometric transformation of Hilbert space, III, Integral Equations Operator Theory 24 (1996), 379-421.
- [4] Y. B. Choi, A propagation of quadratically hyponormal weighted shifts, Bull. Korean Math. Soc. 37 (2000), no. 2, 347-352.
- [5] R. E. Curto, Quadratically hyponormal weighted shifts, *Integral Equations Operator Theory*, **13** (1990), 49-66.
- [6] P. Fan, A note on hyponormal weighted shifts. Proc. Amer. Math. Soc. 92 (1984), 271-272.
- [7] A. D. Joshi, An example of a monotone shift which is not quadratically hyponormal. *Math. Student* 51 (1983), 193-194.
- [8] J. Stampfli, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966), 367-379.

*

Department of Mathematics Education Sangmyung University Seoul 110-743, Republic of Korea *E-mail*: jilee@smu.ac.kr